z-logo
open-access-imgOpen Access
Ordered mesoporous antireflective films for 1053 nm high power pulse laser
Author(s) -
Jinghua Sun,
Yao Xu,
Lianghong Yan,
LU Hai-bing,
Yuan Xiao-Dong
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.206802
Subject(s) - materials science , anti reflective coating , mesoporous material , thin film , transmission electron microscopy , transmittance , optics , surface roughness , ellipsometry , laser , analytical chemistry (journal) , optoelectronics , layer (electronics) , nanotechnology , composite material , chemistry , physics , catalysis , biochemistry , chromatography
Single-layer silica films are prepared via evaporation-induced-self-assembling process using triblock copolymer surfactant F127 as template and tetraethoxysiliane as precursor under acidic condition. After ammonia pretreatment, the as-deposited films undergo a thermal decomposition process to remove the surfactant, and the mesopores are formed in film. Three techniques are used to characterize the mesoscopic structure of film, i.e., grazing-incidence X-ray diffraction, nitrogen adsorption/desorption and transmission electron microscopy. The results indicate that the film has an ordered cage-like porous structure and can be indexed as the body-centered-cubic arrangement. The optical properties of the films are investigated via ellipsometry and UV-VIS-NIR transmission spectrometer. The transmitance can reach up to 99.9% at 1053 nm wavelength. The refractive index varies with the molar ratio of F127/Si. Atomic force microscope is used to probe the surface morphology, and the surface roughness Ra is 1.2 nm. A 1053 nm laser is used to determine the laser damage threshold of film and all the thresholds are higher than 25 J· cm-2 (1 ns). This method has a potential application in the preparation of large-aperture antireflective films.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom