
Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes
Author(s) -
Zhipeng Cai,
Yang Wen-Zheng,
Weidong Tang,
Xun Hou
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.187901
Subject(s) - photocathode , cathode , optoelectronics , doping , materials science , electron , quantum efficiency , optics , physics , electrical engineering , quantum mechanics , engineering
A new-type GaAs photocathode with ultrafast time response, that is, the large exponential-doping transmission-mode GaAs photocathode, is discussed in detail. The response characteristics, including quantum yield, time and spatial resolution, are numerically simulated. The analysis results show that the transit response time of the photo-excited electrons for the GaAs photocathode is extremely shortened, because the built-in electric field in GaAs layer formed by the large exponential-doping mode is benefitcial to the photoelectron transport process of GaAs photocathodes. The response time can reach about 10 ps when the thickness of GaAs dgorption layer is around, which shows that the novel NEA cathode has a better feature of temporal response than that of traditional GaAs photocathode. In addition, the quantum yield will reach 10%-20% in the whole special response range, and the spatial resolution is improved obviously. The analysis results indicate that with high quantum efficiency guaranteed, the large exponential-doping NEA cathode overcomes the limitation of time response of traditional GaAs NEA cathode and improves the spatial resolution, which indicates that the new NEA cathode is expected to meet the demands of high-speed device and photoelectron device, and promote the further development and applications of NEA cathodes.