z-logo
open-access-imgOpen Access
Sensitivity of Delta-P1 approximation model to second-order parameter
Author(s) -
Rui Wang,
Wang Yushan
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.184202
Subject(s) - physics , sensitivity (control systems) , scattering , dirac delta function , function (biology) , impact parameter , point source , phase function , optics , absorption (acoustics) , diffusion , heavy traffic approximation , phase (matter) , mathematical analysis , computational physics , statistics , quantum mechanics , mathematics , electronic engineering , engineering , evolutionary biology , biology
The sensitivity of the second-order parameter of the Henyey-Greenstein phase function based on the spatially-resolved diffuse reflectance within the two-point-source approximation to the Delta-P1 approximation model is studied, and the analytical expression of the sensitivity is derived. The results show that the analytic solution of the Delta-P1 approximation model for reflectance contains the second-order parameter of the scattering phase function compared with the diffusion approximation model, and the second-order parameter has significant influence (the extreme value greater than 30%) on the analytic solution for spatially-resolved diffuse reflectance with small source-detector separations ( 1.5 mm) no matter whether the absorption is weak or strong. The research has theoretical significance for obtaining the optical information abour tissue with the second-order parameter .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom