z-logo
open-access-imgOpen Access
Method on double-pass acousto-optic frequency shifter in absolute distance measurement using Fabry-Pérot interferometry
Author(s) -
Liqiong Zhang,
Yan Li,
Minhao Zhu,
Jitao Zhang
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.180701
Subject(s) - optics , diffraction , fabry–pérot interferometer , beam (structure) , physics , interferometry , materials science , dynamic range , radio frequency , bandwidth (computing) , telecommunications , wavelength , computer science
In order to realize nanometer-scale absolute distance measurements based on Fabry-Pérot interferometry for long-range displacement measurement of the moving coil in Joule balance, the acousto-optic frequency shifter (AOFS) in double-pass configuration is presented, and a tunable frequency difference in a range of 200 MHz is achieved. The focus length of the lens is determined by analyzing the relationship of the tradeoff between the AOFS modulation bandwidth and its diffraction efficiencies; the beam spot of the first-order diffraction beam is guaranteed by accurately positioning the focused beam according to the distribution of the zero-order diffraction beam spot. The experimental single-pass and double-pass peak diffraction efficiency of the AOFS are 79.54% and 61.41%, respectively; the tunable frequency difference of 440-640 MHz, which is twice the single-pass modulation bandwidth output of 220-320 MHz, is obtained by the beat note between the incident beam and the first-order diffraction beam of the double-pass AOFS, and has a good signal-to-noise ratio. Theoretical analysis shows that a folded Fabry-Pérot cavity length displacement of about 53 mm can be measured through the tunable frequency difference achieved by means of double-pass AOFS.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom