Peaked soliton solutions and interaction between solitons for the extended (2+1)-dimensional shallow water wave equation
Author(s) -
Ma Song-Hua,
Jian-Ping Fang
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.180505
Subject(s) - soliton , physics , periodic wave , variable (mathematics) , waves and shallow water , wave equation , riccati equation , excitation , separation (statistics) , mathematical analysis , quantum mechanics , nonlinear system , partial differential equation , mathematics , thermodynamics , statistics
By an improved Riccati mapping approach and a variable separation approach, a new family of variable separation solutions (including solitory wave solutions, periodic wave solutions, and rational function solutions) of the extended (2+1)-dimensional shallow water wave (SWW) equation is derived. According to the derived solitary wave excitation, we obtain some special peaked soliton structures and study the interaction between solitons.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom