
Analytical model for acoustic multi-relaxation spectrum in gas mixtures
Author(s) -
Kesheng Zhang,
Shu Wang,
Ming Zhu,
Yi Hu,
Jia Ya-Qiong
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.174301
Subject(s) - vibrational energy relaxation , relaxation (psychology) , polyatomic ion , materials science , absorption (acoustics) , dispersion (optics) , absorption spectroscopy , spectral line , heat transfer , molecular physics , atomic physics , physics , thermodynamics , optics , molecule , excited state , astronomy , composite material , psychology , social psychology , quantum mechanics
To identify the correlation between sound propagation and molecular multimode vibrational relaxation in polyatomic gas mixture, an analytical model that constructs acoustic multi-relaxation spectrum is presented. The frequency-dependent effective specific heat of gas is formulated from the micro view of vibrational mode energy transfer as well as the macro view of relaxation process due to vibrational-vibrational mode energy coupling. With the aid of the general relaxation equations of multimode vibrational energy transfer, the analytical expressions to calculate acoustic relaxation absorption and dispersion, which reflect both primary and secondary relaxation processes, are developed from the effective specific heat. The constructed absorption spectra of various gas mixtures, consisting of carbon dioxide, methane, nitrogen, and oxygen, accord with the experimental data very well. Especially, the peak errors of those results are less than 1%. Moreover, the simulation results illustrate that less than two single processes with higher strength appear generally in a multi-relaxation absorption spectrum. Compared with the existing models, the analytical model can directly obtain the analytical expressions of characteristic points in the relaxation spectrum of gas mixtures, which makes it advantageous to analyze the spectral characteristics qualitatively and quantitatively. Consequently, the model provides an effective approach to analyzing the relationship between sound propagation and molecular vibrational relaxation of gas mixtures.