z-logo
open-access-imgOpen Access
Modeling and simulation of electrification of wind-blown-sand two-phase flow
Author(s) -
Wei Wei,
Luyi Lu,
Zhaolin Gu
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.158301
Subject(s) - electric field , wind tunnel , discrete element method , mechanics , computational fluid dynamics , environmental science , meteorology , geology , physics , quantum mechanics
The electrification of wind-blown sand, such as dust storms and dust devils, is known as the tribo-electric effect of sand particles and the stratification of different size particles. Combined with the grain electrification model, a new numerical method of gas-solid two-phase flow is developed for the simulation of wind-blown-sand two-phase flow, which is a hybrid method of computational fluid dynamics and discrete element method (CFD-DEM). In the developed wind-blown-sand two-phase flow of horizontal wind tunnel, the simulation results indicate that large size grains become positively charged while small size grains become negatively charged, and the critical diameter of grain with electric neutrality is about 300μm. The simulated charge-to-mass ratio and electric field intensity of the wind-blown sands in the field wind tunnel approach to the measured data, showing the rationality of this numerical method. The simulation also demonstrates that there occurs the maximum of electric field intensity over the sand bed of the field wind tunnel, which is the reason why the electric grounding of the field wind tunnel is used in experiment. The coupling of grain electrification model and gas-solid two-phase flow method provides an important tool for interpreting laboratory and field observations of wind-blown sands and insights into the physical dynamics of dust storms and dust devils as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here