z-logo
open-access-imgOpen Access
Research on plasma axial velocity generated by small debris accelerator coaxial gun
Author(s) -
Zhuxiu Gao,
Feng Chunhua,
Yang Xuanzong,
Jianguo Huang,
Jianwei Han
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.145201
Subject(s) - coaxial , plasma , dense plasma focus , physics , mechanics , atomic physics , nuclear physics , electrical engineering , engineering
"Plasma driven micro-particle accelerator" is a ground device for simulating impact effects of small debris in space. The particle velocity is determined mainly by axial velocity of plasma in a coaxial gun. Emission spectrometry is used to study the plasma axial velocity at different voltages and gas pressures. The experimental results indicate that axial velocity increases with the increase of discharging voltage, and doesn't change significantly with the pressure of working gas, which is consistent with the result of numerical simulation. This result is useful to improve the plasma axial velocity further, and provides an experimental basis for optimizing the accelerator.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom