
Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer
Author(s) -
Luuml; Jin-Guang,
Jingqiu Liang,
Zhongzhu Liang
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.140702
Subject(s) - aliasing , optics , beam splitter , physics , dispersion (optics) , chromatic scale , wavelength , fourier transform , interference (communication) , optical path length , computer science , telecommunications , laser , quantum mechanics , channel (broadcasting) , undersampling
Due to the chromatic dispersion of beam splitter, the interferogram units from various wavelengths could shift by different offsets, leading to interferogram aliasing in transverse space. Simultaneously, the interferograms of different wavelengths have different offsets of optical path difference, which makes the interferogram aliasing in vertical space. According to geometric optics principles, the transverse aliasing of the interferogram reduces the area of the interferogram unit, and the vertical aliasing of the interferogram leads to a phase-frequency response which could reduce the spectral line intensity. The calculation and the analysis indicate that the transverse aliasing area is only 3.4% of the total area of the interferogram unit in our study, which could be removed in the data processing; and the phase delay from the vertical aliasing of the interferogram is proportional to the thickness difference between the beam splitter and the compensating plate. The maximal thickness difference is provided when the contrast reversion appears in the interference fringe. Finally, we correct the chromatic dispersion from the aliasing interferogram by solving linear equation set, and recover the ideal spectrum.