z-logo
open-access-imgOpen Access
Quasiparticle band structure calculation for SiC using self-consistent GW method
Author(s) -
Shang-Peng Gao,
Tong Zhu
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.137103
Subject(s) - quasiparticle , brillouin zone , band gap , pseudopotential , gw approximation , electronic band structure , direct and indirect band gaps , semimetal , condensed matter physics , physics , atomic physics , materials science , molecular physics , superconductivity
Quasiparticle band structures of 3C-SiC and 2H-SiC were calculated using ab initio many body perturbation theory with GW approximation. Quasiparticle energies along high symmetry lines in the first Brillouin zone were evaluated using quasiparitcle self-consistent GW (QPscGW) method and the Maximally-localized Wannier Function interpolation. Both 3C-SiC and 2H-SiC have an indirect band gap with valence band maximum locating at point. The conduction band maximum of 3C-SiC is at X point. As a comparison, band gaps of 3C-SiC calculated by DFT-LDA, one-shot G0W0 and QPscGW are 1.30 eV, 2.23 eV and 2.88 eV respectively. The conduction band minimum of 2H-SiC locates at K point with a band gap of 2.12 eV, 3.12 eV and 3.75 eV predicted by DFT-LDA, one-shot G0W0 and QPscGW respectively. Lattice parameters calculated by DFT-LDA were used in this work. The QPscGW calculations are based on pseudopotential method, predicting slightly larger bandgaps for both 3C-SiC and 2H-SiC comparing with experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here