
The luminescence properties of a novel electron trapped material Sr2SnO4:Sb3+ for optical storage
Author(s) -
Zhilong Wang,
Zheng Gui-Seng,
Shiqin Wang,
Qingsong Qin,
Hongliang Zhou,
Jiachi Zhang
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.127805
Subject(s) - afterglow , luminescence , thermoluminescence , materials science , electron , laser , optoelectronics , intensity (physics) , optical storage , phosphorescence , optics , atomic physics , fluorescence , physics , gamma ray burst , quantum mechanics , astronomy
A novel electron trapped material Sr2SnO4:Sb3+ for optical storage is successfully obtained by conventional solid state method at 1300℃ It indicates that the 1S0 1P1 (208 nm) and 1S0 3P1 (265 nm) transitions of Sb3+ are the most efficient writing light source. Its emission covers 400700 nm and can be attributed to 3P0,1 1S0 transition of Sb3+. We can observe yellowish white light and its color coordination is (0.341, 0.395). The thermoluminescence of Sr2SnO4:Sb3+ contains four peaks at about 39 ℃, 124 ℃, 193 ℃ and 310 ℃, respectively. The intensity of peak at 39 ℃ is low and thus it has a weak afterglow which can last only 140 s. However, even after putting it in dark for 1 day, the peak at 310 ℃ can still keep 45.6% of its original intensity and can be efficiently stimulated by 980 nm infrared laser. As a conclusion, the Sr2SnO4:Sb3+ is a promising electron trapping material for application in optical storage.