Wavelength tunable properties for distributed feedback lasing from dye-doped holographic polymer dispersed liquid crystal transmission grating
Author(s) -
Deng Shu-Peng,
Huang Wen-Bin,
Yonggang Liu,
Diao Zhi-Hui,
Peng Zeng-Hui,
Yao Li-Shuang,
Xuan Li
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.126101
Subject(s) - lasing threshold , materials science , grating , optoelectronics , optics , holography , doping , wavelength , holographic grating , liquid crystal , diffraction grating , physics
In this paper, we study the wavelength tunable properties for distributed-feedback lasing from 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye-doped holographic polymer dispersed liquid crystal grating. By preparing and pumping the DCM-doped HPDLC gratings with various grating spacings, we depict the tuning curve of the distributed-feedback lasing and confirm that only in a range from 574 nm to 685 nm, the lasing action can be observed. Then, we adjust the temperature of the sample and measure the lasing spectrum from the DCM-doped holographic polymer dispersed liquid crystal grating with a grating period of 610nm. There is an obvious 4.9 nm blueshift from 627.9 nm to 623 nm for the lasing wavelength with the temperature increasing from 20℃ to 65℃.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom