
Monte Carlo simulations for non-line-of-sight ultraviolet scattering coverage area
Author(s) -
Taifei Zhao,
Xizheng Ke
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.114208
Subject(s) - non line of sight propagation , monte carlo method , scattering , ultraviolet , path loss , transmission (telecommunications) , computational physics , physics , optics , computer science , telecommunications , statistics , mathematics , wireless
In this paper, the Monte Carlo method is employed to simulate the ultraviolet light scattering transmission. The three modes of ultraviolet (UV) no-line-of-sight (NLOS) communication are analyzed. The UV NLOS transmission model based on the Monte Carlo method is proposed. The path losses of single and multiple scatterings and the coverage area of three UV NLOS modes are simulated by using the Monte Carlo method. Finally, we obtain the conclusion that multiple scattering and single scattering basically have the same path loss. The coverage of NLOS (a) is smallest, but omni-direction is good. The coverage of NLOS (b) is larger, but it is directional. The coverage of NLOS (c) is largest, but it is strongly directional.