z-logo
open-access-imgOpen Access
Analysis of organic photovoltaic devices with MoOx doped 4,4,4-tris(N-(3-methylphenyl)-N- phenylamin) triphenylamine as hole transport layer
Author(s) -
Li Zhao,
Dongyang Liu,
Dongmei Liu,
Ping Chen,
Zhao Yi,
Shiyong Liu
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.088802
Subject(s) - triphenylamine , materials science , energy conversion efficiency , optoelectronics , doping , photoactive layer , layer (electronics) , equivalent series resistance , organic solar cell , nanotechnology , voltage , polymer solar cell , polymer , physics , quantum mechanics , composite material
MoOx doped 4,4,4-tris(N-(3-methylphenyl)-N-phenylamin) triphenylamine (m-MTDATA) is used as a hole transport layer to improve the efficiency of CuPc/C60 small molecular organic photovoltaics. A series of devices is fabricated in a high vacuum system. One of the devices with the structure of indum tin oxides (ITO)/m-MTDATA:MoOx(3:1)(30 nm)/CuPc(20 nm)/C60(40 nm)/Bphen (8 nm)/LiF(0.8 nm)/Al(100 nm) shows that the following parameters are achieved: the open circuit voltage Voc = 0.40 V, short-circuit current Jsc=6.59 mA/cm2, fill factor of 0.55, and power conversion efficiency p=1.46% under AM1.5 solar illumination. The efficiency of the device is improved by 38% compared with that of the device without hole transport layer ITO/CuPc(20 nm)/C60(40 nm)/Bphen(8 nm)/LiF(0.8 nm)/Al(100 nm). The improvement of the device performance may be attributed to the addition of m-MTDATA:MoOx (3:1) (30 nm) hole transport layer that reduces the contact resistance between the ITO electrode and the organic layer, thus reducing the overall device series resistance and improving the efficiency of the device.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here