
Photo-detachment of hydrogen negative ion in a magnetic field near a dielectric surface
Author(s) -
Tang Tian-Tian,
Dehua Wang,
Huang Kai-Yun,
Shanshan Wang
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.063202
Subject(s) - dielectric , magnetic field , ion , materials science , field strength , ionization , cross section (physics) , condensed matter physics , field (mathematics) , atomic physics , physics , optoelectronics , mathematics , quantum mechanics , pure mathematics
Using the closed orbit theory, we study the photo-detachment of H- in a magnetic field near a dielectric surface. The photo-detachment cross section of this system is also derived and calculated. It is found that the photo-detachment cross section is not only related to the magnetic field strength, but also depends on the dielectric constant. For a given ion-surface distance and dielectric constant, with the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillatory structure in the photo-detachment cross section becomes much more complicated. On the other hand, for a given magnetic field strength, the dielectric constant also has a great influence on the photo-detachment process of negative ion. Above the ionization threshold, the photo-detachment cross section becomes oscillatory. With the increase of the dielectric constant, the oscillatory structure in the cross-section becomes much more complicated. Therefore we can control the photo-detachment of negative ion by changing the magnetic field strength and the dielectric constant. This study provides a new understanding of the photo-detachment process of negative ion in the presence of external fields and surfaces.