z-logo
open-access-imgOpen Access
Numerical study of plasma aerodynamic actuation mechanism
Author(s) -
Yumin Cheng,
Wei Nie,
Guoqiang Li
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.060509
Subject(s) - plasma actuator , mechanics , plasma , dielectric barrier discharge , supersonic speed , aerodynamics , materials science , choked flow , shock wave , flow control (data) , aerodynamic force , physics , computer network , computer science , quantum mechanics
Based on the physical processes of dielectric barrier discharge (DBD) and quasi-direct-current (quasi-DC) discharge, the plasma aerodynamic actuation mechanism is analyzed, then the numerical model of plasma aerodynamic actuation is founded, finally the DBD and the quasi-DC discharge plasma flow control processes are simulated in the cases of low velocity and high velocity. The results show that the aerodynamic actuation mechanism of DBD plasma is that the discharge changes three kinds of forces in continuum fluent medium, these being shear stress caused by Newton friction, body force caused by electro hydrodynamic and impulsive active force caused by pressure change, and the main aerodynamic actuation mechanism of DBD plasma is body force caused by electro hydrodynamic. The effect of body force is stronger in near space than in the sea level, plasma induced flow velocity increases in near space. The main aerodynamic actuation mechanism of quasi-DC discharge plasma in supersonic air flow is the thermal mechanism of heat plasma, the exploding wires diathermanous model found in this paper is good for the simulation of the process of surface quasi-DC discharge plasma incident shock. The effect of quasi-DC discharge plasma on the supersonic flow field is conform with the effect of protuberance with a bevel to the supersonic flow field, so it can be used to control the shock wave in supersonic aircraft.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here