
A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking
Author(s) -
Dapeng Zhang,
Minglie Hu,
Chen Xie,
Chai Lu,
Qingyue Wang
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.044206
Subject(s) - materials science , optics , fiber laser , laser , photonic crystal fiber , femtosecond , optoelectronics , physics , wavelength
A high power femtosecond fiber laser based on a Yb-doped large mode area photonic crystal fiber operating in an all-normal dispersion regime is experimentally demonstrated. A ring laser cavity is used without any elements for dispersion compensation. Stable mode-locking is achieved through nonlinear polarization rotation and the dissipative function of a filter. The laser directly outputs 1.03 ps chirped pulses at a 49.09 MHz repetition rate for an average power of 10 W, corresponding to a pulse energy of 202 nJ. The pulses are compressed to 95.5 fs with a grating pair outside the cavity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom