
The theoretical calculation of (e,2e) triple differential cross sections of Ag+ (4p,4d) in coplanar asymmetric geometry
Author(s) -
周丽霞,
燕友果
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.043401
Subject(s) - physics , binary number , atomic physics , valence (chemistry) , born approximation , scattering , recoil , momentum transfer , electron , collision , geometry , molecular physics , quantum mechanics , mathematics , arithmetic , computer security , computer science
The three-body distorted-wave Born approximation is used to calculate the (e,2e) triple differential cross sections (TDCSs) of Ag+(4p10) and Ag+(4d10) in different kinematical variables in coplanar asymmetric geometry. The angles 4, 10 and 20 are selected as the scattering electron angles. We find that the position of binary peak or the dip between split peaks are not in the direction of momentum transfer, which is probably ascribed to one kind of double-binary collision. We also find that the binary peaks show abnormal splits for Ag+(4p10). Such abnormal splits indicate that an (e,2e) process for inner valence orbital of ionic target becomes more complicated than for outer valence orbital. Furthermore, beside the binary peak and the recoil peak, some pronounced peaks appear at certain ejected angles in the (e,2e) TDCSs of Ag+(4p10) and Ag+(4d10). We consider that these pronounced peaks are probably related to one kind of double-binary collision.