z-logo
open-access-imgOpen Access
Influences of the size and breadth of potential barrier on electronic scattering cross-section in spherical nanometer system
Author(s) -
Qiang Wu,
Zheng Rui-Lun
Publication year - 2011
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.127301
Subject(s) - scattering , cross section (physics) , scattering length , radius , physics , resonance (particle physics) , atomic physics , energy (signal processing) , scattering theory , computational physics , optics , quantum mechanics , computer security , computer science
Under the condition of the spherical square potential model and the effective mass approximation, the electronic scattering cross-section and the electronic probability distribution are obtained in an open-type spherical nanometer system, and the influences of the size and the width of potential barrier on electronic scattering cross-section, resonance energy and resonance width are discussed. The results show that there exist one maximum and one minimum in the distribution curve of the electronic scattering cross-section versus energy, and the maximum of electronic energy probability distribution curve is between the maximum and the minimum of energy in the scattering cross-section curve; the scattering cross-section increases with the increase of r0, the inner radius, and the scattering cross-section curve will change from smoother to sharper with the increase of r0; the scattering cross-section will enlarge with , the width of potential barrier, but it will become abnormal when is between 1.4aCdS and 1.7aCdS; when =1.6aCdS, the scattering cross-section is extremely small; El, the electronic resonance energy changing with , is related to the electronic state, while l, the electronic resonance width will decrease with the increase of ; no matter what is, both El and l satisfy the uncertainty principle of energy and time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here