z-logo
open-access-imgOpen Access
The origin of EPIR effect in Nd0.7Sr0.3MnO3 ceramics
Author(s) -
Changping Yang,
Shunsheng Chen,
Dai Qi,
Song Xue-Ping
Publication year - 2011
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.117202
Subject(s) - materials science , grain boundary , ceramic , crystallite , space charge , condensed matter physics , electrode , phase boundary , nonlinear system , composite material , phase (matter) , microstructure , metallurgy , electron , chemistry , physics , organic chemistry , quantum mechanics
Polycrystalline ceramic Nd0.7Sr0.3MnO3 is synthesized using high-energy ball milling and post heat treatment method. The properties of electric transport are measured using direct current (DC) 4-wire and 2-wire methods. The results show that both the grain (phase) boundary and the electrode-bulk contact interface has interfacial resistance and space charge layer. The two kinds of space charge regions have greatly different effects on the DC transport: for the former, the I-V curve exhibits nonlinear characteristic and no EPIR effect takes place; for the later, however, an obvious EPIR effect is observed even if the I-V curve also shows nonlinear behaviour. It well suggests that for the ceramic Nd0.7Sr0.3MnO3, only the electrode-bulk contact interface can induce the EPIR effect although there is a similar nonlinear I-V characteristic for the grain (phase) boundary and the electrode-bulk contact interface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom