
First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide
Author(s) -
Rui Su,
Jie He,
Jiasheng Chen,
Guo Ying-Jie
Publication year - 2011
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.107101
Subject(s) - rutile , photoelectric effect , electronic structure , optical conductivity , materials science , electronic band structure , condensed matter physics , density of states , vanadium , atomic physics , physics , optoelectronics , chemistry , organic chemistry , metallurgy
The electronic structure and the photoelectric properties of rutile based VO2 are investigated using the FP-LAPW method which is combined with the DFT+U method. The calculated density of statas (DOS) shows that the DFT+U method can describe the conductive band properly. The V-O bonding in VO2 is induced mainly through the strong hybridization of V3d orbital and O2p orbital. The calculated plasma frequency is 3.44 eV when the applied light field is perpendicular to the c axis and 2.74 eV when the applied light field is along the c axis. The optical conductivity spectrum shows a Drude-like peak is between 0 eV and 1 eV while in upper area the interband contribution is more important. Finally, the reflection spectrum and the election energy loss spectrum (EELS) are calculated and analyzed.