Bi-directional pedestrian flow model with traffic convention
Author(s) -
Yang Lingxiao,
Xiaomei Zhao,
Ziyou Gao,
Jianfeng Zheng
Publication year - 2011
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.100501
Subject(s) - cellular automaton , pedestrian , computer science , traffic flow (computer networking) , diagram , position (finance) , simulation , flow (mathematics) , traffic congestion , transport engineering , statistical physics , algorithm , computer network , mathematics , geometry , physics , engineering , finance , database , economics
In this paper, we extend a cellular-automata model recently proposed by Baek et al. to simulate traffic dynamics of the bi-direction pedestrians. And we present two improved strategies for the moving rules of the pedestrians. Numerical studies of average velocity-density diagram, spatial density distribution and position distribution of the pedestrians are given. We find that the two improved strategies can not only increase the average velocity of pedestrian flow, but also improve the utilization of the road, especially for the central region, reduce the degree of congestion, and avoid the occurrence of serious congestion. The two improved strategies have more comprehensive considerations of psychological and behavioral characteristics of pedestrians, which are also proper to simulate bi-directional pedestrian dynamics under a high traffic density.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom