z-logo
open-access-imgOpen Access
Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters
Author(s) -
Xiurong Zhang,
Wu Li-Qing,
Rao Qian
Publication year - 2011
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.083601
Subject(s) - natural bond orbital , atom (system on chip) , density functional theory , cluster (spacecraft) , atomic physics , magnetic moment , materials science , ab initio , raman spectroscopy , electronic structure , ferromagnetism , aromaticity , molecular physics , physics , condensed matter physics , molecule , optics , quantum mechanics , computer science , programming language , embedded system
The possible geometrical and electronic structures of (OsnN)0,(n=16) clusters are optimized by using the density functional theory (B3LYP) at the LANL2DZ level. For the ground state structures of (OsnN)0,(n=16) clusters, The magnetic properties, the natural bond orbit (NBO), the spectrum and the aromatic characteristics are analyzed. The calculated results show that the magnetic moment of OsnN- cluster is quenched at n=1 and 5. Reversed ferromagnetic coupling between Os atom and N atom takes place in Os2N and Os4N0, clusters. The NBO charge distribution of clusters depends on the relative position of the atom, for example, the charge transfer happening to N atoms in the endpoint is more obvious than that happening to the N atoms in the middle. There are obvious vibration peaks in IR and Raman spectra of (OsnN)0,(n=16) clusters. The aromaticity of Os5N- cluster is the strongest.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom