
Target patterns obtained by suddenly increasing applied voltage in dielectric barrier discharge
Author(s) -
Lifang Dong,
Yibo Han,
Weili Fan,
Yuanyuan Li,
Yujie Yang,
Hong Xiao
Publication year - 2011
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.065206
Subject(s) - voltage , materials science , dielectric barrier discharge , wavelength , argon , dielectric , optoelectronics , physics , atomic physics , quantum mechanics
Stable target patterns are produced by suddenly increasing the applied voltage in argon dielectric barrier discharge at atmospheric pressure for the first time. The stability and wavelength selection of target patterns obtained by gradually increasing applied voltage after suddenly increasing applied voltage and by directly suddenly increasing applied voltage are studied respectively. It is found that the target patterns obtained by gradually increasing applied voltage are unstable. There is mutual transformation between target pattern and spiral, in which the target pattern can only survive for several tens milliseconds. The target patterns obtained by directly suddenly increasing applied voltage are much more stable, which can survive for more than 5min. The wavelength selections of target patterns obtained by above two methods are studied. It is found that the wavelength of target patterns obtained by directly suddenly increasing applied voltage decreases more quickly as the applied voltage increases. The results show that the applied voltage increasing way in which the target patterns are obtained plays an important role in the stability and wavelength selection of target pattern.