
Spectral diagnostics of electron density of plasma torch at atmospheric pressure
Author(s) -
Lifang Dong,
Weiyuan Liu,
Yujie Yang,
Shuai Wang,
Ji Ya-Fei
Publication year - 2011
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.045202
Subject(s) - stark effect , electron density , plasma , atomic physics , argon , plasma torch , atmospheric pressure , materials science , plasma diagnostics , electron temperature , plasma cleaning , electron , plasma parameters , emission spectrum , spectral line , physics , quantum mechanics , astronomy , meteorology
An atmospheric pressure plasma torch is generated with a hollowneedle-to-plate dielectric barrier discharge and the electron densities in the inside and at the surface of the plasma torch are measured by optical emission spectroscopy (OES). A plasma torch with 1cm long is generated in atmospheric ambient when argon gas is introduced through the hollwneedle. The Stark broadenings of Hα and ArⅠ(696.54 nm) lines, which are decomposed from the experimental profiles by using deconvolution method, are used to estimate the corresponding electron densities. The electron densities are 1.0×1015 cm3 and 3.78×1015 cm3 corresponding to the Stark broadening of Hα and ArⅠ(696.54 nm) lines, respectively. The electron density calculated from the Stark broadening of Hα is the same as that at the surface of the plasma because Hα line originates from the dissociation and the excitation of H\-2O at the plasma torch surface where argon can meet with atmosphere. While the electron density calculated from the Stark broadening of ArⅠ(696.54 nm)line is the same as that in the insid of plasma.