
Numerical simulation study on effects of alternansbehavior on spiral waves
Author(s) -
Wei Hai-Ming,
Tang Guo-Ning
Publication year - 2011
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.040504
Subject(s) - spiral wave , spiral (railway) , physics , mechanics , oscillation (cell signaling) , excitable medium , homogeneous , computer simulation , classical mechanics , statistical physics , mathematics , mathematical analysis , biology , genetics
The alternans behavior is considered in the Greenberg-Hasting model of discrete excitable medium. The effect of the alternans behavior on spiral wave is investigated. The numerical results show that when the relevant parameters are appropriately chosen the alternans behavior has a significant influence on spiral waves. For example, the alternans behavior leads to the oscillation of the shape of the spiral wave and to the generation of the breathing spiral wave. The alternans behavior induces the meandering and the drifting of spiral waves, even causes spiral wave to move out of the system. Spiral wave can break up into multiple spiral waves, anti-target wave and spatiotemporal chaos due to the alternans behavior. The phenomena that the alternans behavior leads to the conduction barrier in homogeneous medium and causes spiral wave to break up or vanish, are observed for the first time. The physical mechanisms about these phenomena are briefly analyzed.