Influence of NPB:CBP modulated hole transporting layer on yellow organic light-emitting device characteristics
Author(s) -
Chen Su-Jie,
Junsheng Yu,
Wen Wen,
Jiang Ya-dong
Publication year - 2011
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.037202
Subject(s) - oled , materials science , doping , electroluminescence , iridium , biphenyl , optoelectronics , layer (electronics) , chemistry , nanotechnology , biochemistry , organic chemistry , catalysis
Organic light-emitting devices (OLEDs) with the structure of indium-tin oxide (ITO)/N, N'-diphenyl-N, N'-bis(1-naphthyl-pheny1)-1, 1'-biphenyl-4, 4'-diamine (NPB):4, 4'-N, N'-dicarbazole-biphenyl (CBP)/CBP:bis iridium (acetylacetonate) /2, 9-dimethyl-4, 7-diphenyl-phenanthroline (BCP)/Mg:Ag were fabricated. A doping system consisting of NPB and CBP was employed as the modulated hole transporting layer. The electroluminescent characteristics of the OLEDs were investigated by adjusting the concentration proportions of NPB:CBP doping system. The results showed that the hole transporting capability can be adjusted and the power efficiency was remarkably affected by different doping concentration of NPB:CBP system. Optimized yellow light OLED with a maximum power efficiency of 18.1 lm/W was obtained with an optimum concentration proportion of NPB:CBP of approximately 1 ∶3. The improved OLED performance was attributed to the reduction of hole injection and low transporting capability by doping bipolar host material CBP in hole transporting layer, which significantly enhanced charge carrier balance and electron-hole recombination probability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom