z-logo
open-access-imgOpen Access
Metalloporphyrin bonded SiO2 organic-inorganic materials and their strong nonlinear refractive index
Author(s) -
Zhang Xiao-He,
Wang Dongjie,
Haiping Xia
Publication year - 2011
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.024210
Subject(s) - copper , materials science , monomer , refractive index , hydrolysis , nonlinear optical , molecule , infrared spectroscopy , chemical state , photodissociation , condensation , sol gel , polymer chemistry , chemical engineering , photochemistry , polymer , x ray photoelectron spectroscopy , organic chemistry , chemistry , composite material , nanotechnology , nonlinear system , optoelectronics , physics , quantum mechanics , engineering , metallurgy , thermodynamics
Copper metalloporphyrin was bonded to 3-aminopropltriethoxysilane (NH2(CH2)3Si(OC2H5)3, KH550) by the chemical reaction between the carboxyl group of Cu(Ⅱ) meso-Tertra(4-carboxyphenyl)porphine (Cu(Ⅱ)-TCPP) and amino-group of KH550. The copper metalloporphyrin was connected to gel network after the hydrolysis and condensation of the product. The reaction product of different concentrations was hybridized with 3-glycidoxypropltrimethoxysilane (CH2OCHCH2O(CH2)3Si(OCH3)3, KH560) with sol-gel processing to form sol-gel inorganic material, which has good physical-chemical and optical properties. The cross-linkage of Cu(Ⅱ)-TCPP and KH550 was estimated and confirmed with FT-IR spectroscopy. The state of metalloporphyrin molecules was investiaged by UV/VIS spectra. It was found that the Cu(Ⅱ)-TCPP exists mainly in the state of monomer. Nonlinear optical properties of samples was studied by Z-scan technique using Ti:Sapphire femto-second laser pluses. The nonlinear refractive index n2 reached -1.1161×10-16 m2/W.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom