z-logo
open-access-imgOpen Access
Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots
Author(s) -
Hongliang Jiang,
Rongjun Zhang,
Hongming Zhou,
Duanzheng Yao,
Guangquan Xiong
Publication year - 2011
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.017204
Subject(s) - condensed matter physics , electron , quantum dot , physics , magnetic field , growth rate , materials science , atomic physics , quantum mechanics , mathematics , geometry
To deal with the Hamiltonian model in InAs QDs with a single electron, we’ve taken the SO interaction as a perturbation term, calculated the SO matrix elements under Fock-Darwin eigenfunction which are used for second order corrections on the energies and wave functions, and considered the influence of new energy levels on g factor and effective mass m*. The expression of phonon-assisted electron spin relaxation rate Γ in InAs QDs is deduced, which shows different dependences on confined potential frequency ω0, temperature T, vertical height z0 and magnetic field B. Among them, temperature for the electron spin relaxation plays a dominant role, followed by lateral confinement potential frequency, magnetic field and the vertical height, in order of importance. (1) Growth of ω0, which corresponds to the decrease of the effective transverse size d in InAs QDs, suppresses the increase of the rate Γ. (2) The temperature T affects the rate Γ evidently, which will reduce the inhibition of ω0 on Γ. With increase of the temperature from 1 K to 7 K, the spin inversion relaxation rate grows explosively from 103 s1 to 108 s1. (3) The rate Γ decreases with the growth of the vertical height z0 and have the order of magnitude 100103 s-1 at T=1 K, whereas the influence of the temperature increase (at T=6 K) on the rate will gradually exceed that of the height growth. (4) At different frequencies ω0 all curves of the rate Γ versus magnetic field B have a peak that almost appears at the same field, which is attributed to the contribution of the Zeeman term H ^ Z exceeding that of H ^ SO since there is a considerable g factor in InAs material.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here