z-logo
open-access-imgOpen Access
Beam propagation factor of cosh-Gaussian array beams propagating through atmospheric turbulence
Author(s) -
Liu Fei,
Xiaoling Ji
Publication year - 2011
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.60.014216
Subject(s) - physics , turbulence , beam (structure) , optics , m squared , gaussian , gaussian beam , atmospheric turbulence , beam diameter , computational physics , mechanics , quantum mechanics , laser beams , laser
The analytical formula for the beam propagation factor ( M 2-factor) of cosh-Gaussian (ChG) array beams propagating through atmospheric turbulence is derived, and the influence of turbulence on the M 2-factor is studied by using the relative M 2-factor. It is shown that the M 2-factor is not a propagation invariant in turbulence, and the turbulence results in an increase of the M 2-factor. For the incoherent combination, the M 2-factor of ChG array beams increases with increasing propagation distance, beam parameter, relative beam separation distance and beam number. For the coherent combination, the M 2-factor of ChG array beams increases with oscillatory behavior as the beam parameter or the relative beam separation distance increases. For the coherent combination the M 2-factor is always smaller than that for the incoherent combination. However, for the incoherent combination the M 2-factor is always less sensitive to turbulence than that for the coherent combination. In particular, the influence of turbulence on the M 2-factor can be reduced by a suitable choice of the relative beam separation distance. With increasing beam number, the M 2-factor becomes more sensitive to turbulence for the coherent combination, while for the incoherent combination the M 2-factor becomes less sensitive to turbulence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here