z-logo
open-access-imgOpen Access
Frictional properties of fluorinated diamond-like carbon films prepared by radio frequency reactive magnetron sputtering
Author(s) -
Peijun Wang,
Meifu Jiang,
Du Ji-Long,
Dai Yong-Feng
Publication year - 2010
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.8920
Subject(s) - materials science , raman spectroscopy , diamond like carbon , nanoindenter , graphite , sputter deposition , analytical chemistry (journal) , sputtering , fourier transform infrared spectroscopy , carbon fibers , carbon film , composite material , thin film , nanotechnology , elastic modulus , chemical engineering , optics , chemistry , organic chemistry , physics , engineering , composite number
The fluorinated diamond-like carbon (F-DLC) films are prepared by radio frequency reactive magnetron sputtering with different flow ratios of CHF3 and Ar as a source gas and pure graphite as a target. Surface morphology, hardness, bonding configuration and tribological properties are investigated by atomic force microscope, nanoindenter, Raman spectra, Fourier transform infrared (FTIR) spectra and a ball-on-disk test rig, respectively. The results show that the F-DLC films are distributed compactly and homogeneously and exhibit good friction-reducing behaviors. The minimum of friction coefficient reaches about 0.42 at r=1 ∶6 while the hardness of films is highest. Raman spectra and FTIR spectra reveal that with the increase of r, the fluorine content gradually increases. However, the intensity ratio ID/IG of Raman bands of disordered graphite (D-band) and graphite (G-band) of F-DLC films decreases, which is indicative of the decrease of the fraction of aromatic ring. The results also show that the F content is another significant factor which affects the friction coefficient. The weakening of —CF2 asymmetric stretch vibration intensity and the formation of CFH in C C chains may result in a lower friction coefficient of F-DLC films.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom