z-logo
open-access-imgOpen Access
Orbital ordering driven spin dimer state in double-layered antiferromagnet K3Cu2O7
Author(s) -
陈东猛,
刘大勇
Publication year - 2010
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.7350
Subject(s) - condensed matter physics , antiferromagnetism , physics , frustration , ground state , ferromagnetism , atomic orbital , atomic physics , quantum mechanics , electron
Magnetic, orbital and lattice structures of K3Cu2F7 are determined by cluster self-consistent field approach based on the spin-orbital-lattice Hamiltonian. Symmetry breaking and Jahn-Teller distortion of approximately isolated bilayer cause Cu2+ ions alternatively to occupy z2-x2〉/ z2-y2〉 orbitals in each layer. This orbital ordering occupation leads to the dominant intrabilayer antiferromagnetic coupling, which favors spin dimerization, and the weak intralayer ferromagnetic coupling. Due to absence of spin frustration resulting from the intralayer orbital arrangement and the weak ferromagnetic coupling satisfing Goodenough-Kanamori-Anderson (GKA)rule, the ground state is a stable spin dimer state. The spin singlet-triplet excitation gap obtained by bond-operator mean field method is about 326 K, which is close to the experimental value of 400 K. The present theory is also applicable to explaining the formation of spin dimer state in Cs3Cu2Cl4Br3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here