Hyper-spectral imaging system with harmonic diffraction element in medium and far infrared
Author(s) -
Ying Liu,
Qiang Sun,
Zhenwu Lu,
Qu Feng,
Wu Hong-Sheng,
Chun Li
Publication year - 2010
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.6980
Subject(s) - infrared , optics , optical transfer function , physics , multi band device , modulation (music) , dispersion (optics) , telecommunications , computer science , antenna (radio) , acoustics
In order to obtain enough information about the target and make full use of medium- and long-wave infrared spectral data, this article describes a harmonic diffractive/refractive (HDE) optical imaging system. Taking advantage of its special dispersion capability, the application of HDE in the infrared dual-band provides hundreds of spectral images in infrared band, medium-wave infrared band of 3.7—4.8 μm and long-wave infrared band of 8—12 μm. The design results show that: at 18 lines/mm, the optical modulation transfer function is greater than 0.55 in medium-wave infrared band, at 13 lines/mm the optical modulation transfer is greater than 0.5 in long-wave infrared band, in the circle of 30 μm radius, the encircled energy is greater than 85% in medium-wave infrared band, in the circle of 38 μm radius, the encircle energy is great than 80% in long-wave infrared band, the spectral resolution is 0.039 μm at 4.25 μm and 0.072 μm at 8.5 μm respectively. So the optical modulation transfer function in infrared dual-band is close to the diffraction limit, and the encircled energy meets the energy requirement of one pixel of existing domestic detectors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom