
Entanglement between a two-level atom and spontaneous emission field in anisotropic photonic crystal
Author(s) -
Xie Shuang-Yuan,
Huimin Xiang
Publication year - 2010
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.6172
Subject(s) - quantum entanglement , physics , atom (system on chip) , anisotropy , field (mathematics) , photonic crystal , spontaneous emission , quantum mechanics , atomic physics , quantum , laser , mathematics , computer science , pure mathematics , embedded system
By means of Von Neumann entropy and Schmidt number K, we study the time evolution properties of the entanglement between a two-level atom and spontaneous emission field in anisotropic photonic crystal. The evolution properties of the atom-field entanglement are directly related to the relative position of the upper level from the band edge. The atom-field entanglement can keep steady when the atomic upper level is within the band gap. The atom-field entanglement increases to the maximum value firstly and then decay to zero when the atomic upper level is within the transmitting band. The atom-field entanglement also depends on the initial state of the atom. We can control the time evolution properties of the atom-field entanglement by choosing special atomic initial state and the relative position of the upper level from the band edge.