
Piezoelectric discharge characteristic of ZnO nanorod studied with atomic force microscopy
Author(s) -
Shao Zheng-Zheng,
Xiaofeng Wang,
Xueao Zhang,
Chang Sheng-Li
Publication year - 2010
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.550
Subject(s) - nanorod , materials science , piezoelectricity , schottky diode , schottky barrier , optoelectronics , semiconductor , kelvin probe force microscope , diode , atomic force microscopy , nanotechnology , composite material
Piezoelectric discharge characteristic of semiconductor ZnO nanorod was studied with atomic force microscope in contact mode. The c-axial orientation ZnO nanorod array film was fabricated with two-step wet-chemical method. Electric pulses were got when Pt coated probe contact-scans the ZnO nanorod, their peak value reaches 120 pA. The electric pulse is related with the topography of ZnO nanorod and has a time duration of 30 ms. The contact of Pt coated probe and ZnO nanorod behaves as a Schottky diode. The I-V curve showed the piezoelectric voltage must be larger than 03 V to drive Schottky diode. The resistance of Schottky contact has a magnitude of GΩ order during piezoelectric discharge, which is the major factor impacting the output of piezoelectric potential.