
Instantaneous characteristics of excited atom state 5s' 4D7/2 in the copper plasma induced by laser
Author(s) -
Shibing Liu,
Yuanxing Liu,
He Run,
Tao Chen
Publication year - 2010
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.5382
Subject(s) - excited state , atomic physics , atom (system on chip) , plasma , nanosecond , copper , ion , laser , electron , physics , materials science , optics , quantum mechanics , computer science , metallurgy , embedded system
The formation of excited atom state 5s' D7/2 and its transition process in the copper plasma induced by nanosecond pulse laser are studied by the time-resolved spectrum technology. The experimental results indicate the recombination of electron and ion and the collisions among particles each play a dominent role in forming excited atom state 5s'D7/2 at different tims during its evolvement. When the collisions among particles are severe, the excited atom state 5s' D7/2 mainly transits to low energy atom state 4p' 4 Fo9/2. 500 ns after the peak of laser pulse arriving at target surface, the excited state 5s'D7/2 transited to 4p' 4 Fo9/2 and 4p' 4 D7/2 with the same probabilities by emitting lines CuI465.11 nm and CuI529.25 nm respectively.