z-logo
open-access-imgOpen Access
Study of the influence mechanism of additional elements on the corrosion behavior of bulk Cu-based amorphous alloys
Author(s) -
Hui Zhou,
Di Wu,
Guoying Zhang,
Xiao Ming-Zhu
Publication year - 2010
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.488
Subject(s) - materials science , amorphous metal , amorphous solid , corrosion , alloy , adsorption , oxide , molecular dynamics , chemical engineering , metallurgy , chemical physics , chemistry , crystallography , computational chemistry , physics , engineering
The liquid state Cu-Al alloy system was simulated by using the molecular dynamics method, then Cu-Al amorphous alloy is obtained by cooling process simulation. This article firstly sets up crystalline Cu-Al alloy liquid by using the molecular dynamics. The models of Cu-Al-M bulk amorphous alloys, their clean surfaces and their surfaces with O adsorption are set up by computer programming. The influence mechanism of additional elements Zr, Nb, Ta, V, Y and Sc on the corrosion behavior of bulk Cu-based amorphous alloys are investigated by using real-place recursive method. Results show that the alloying elements do not aggregate on the clean surface of bulk Cu-based amorphous alloys, but tend to aggregate on the surface with O adsorption with the exception of Y, which indicates that the segregation of the bulk Cu-based amorphous alloy surface with O adsorption is reversed. Calculations of the total bond order integral show that additional element can interact with oxygen easily to form oxide film on the surface of Cu-based amorphous alloys, which can improve the corrosion resistance of bulk Cu-based amorphous alloys. The improvement in corrosion resistance of Cu-based metallic glass with Y addition may be due to the aggregation of Y to the interface between alloy and oxide film, which improves the adhesion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here