Critical behavior of the quantum Heisenberg model on three-dimensional diamond-type hierarchical lattice
Author(s) -
Zou Wei-Ke,
Xiang-Mu Kong,
Chun-Yang Wang,
Gao Zhong-Yang
Publication year - 2010
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.4874
Subject(s) - condensed matter physics , critical exponent , antiferromagnetism , phase diagram , heisenberg model , anisotropy , renormalization group , phase transition , physics , ferromagnetism , ising model , lattice (music) , quantum phase transition , critical phenomena , quantum , diamond , diamond cubic , parameter space , quantum mechanics , materials science , phase (matter) , mathematics , geometry , acoustics , composite material
With a real-space renormalization-group method, the anisotropic quantum Heisenberg model on three-dimensional diamond-type hierarchical lattice is studied, and the phase diagram and critical properties are obtained. For the ferromagnetic system, it is shown that there is a finite-temperature phase transition for Δ=0 where Δ is the anisotropy parameter. The order parameter and critical exponents are also calculated. For the antiferromagnetic model, we find that the critical temperature is not equal to zero for Δ=0 and there is not reentrant behavior on the critical line.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom