z-logo
open-access-imgOpen Access
Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion
Author(s) -
Zhao Chao-Ying,
Wei Tan
Publication year - 2010
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.2498
Subject(s) - degenerate energy levels , physics , dispersion (optics) , parametric statistics , nonlinear system , quantum entanglement , optical parametric amplifier , statistical physics , quantum mechanics , optics , quantum , mathematics , optical amplifier , statistics , laser
In this paper, we first find out the analytic solution of the time-dependent Fokker-Planck equation of the non-degenerate optical parametric amplification (NOPA) system under the consideration of the dispersion, the loss and the pump depletion effects. Then, through the numerical calculation, we obtain the squeezing characteristic of the degenerate optical parametric amplification (DOPA) system with dispersion. the research indicates: the dispersion effect stems from the nonlinear susceptibility change from χ″ toχ″/{1+σ2/}/+2, with the increasing of the dispersion effect, the general feature of the squeezing curves beeps unchanged, and the curves contract toward left. The maximum squeezing approaches to the linear theory 1/(1+μ). Finally, we obtain the entanglement characteristic of the NOPA system with dispersion. We find out when σ is given, with the increasing of pump parameter μ, he corresponding phase makes a large change. The nonlinear susceptibility changes many times. When the polarity is positive, the system obtains the gain, when the polarity is negative, the system suffers the loss, but the gain is mainly dissipated by the loss, so the net gain is small, the squeezing is also small. The minimum variance V1 reduces gradually, and the whole curve moves to the right, approaches to the linear theory 1/(1+μ).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here