
An all fiber multi-laser pulse generation system
Author(s) -
Hungyen Lin,
Jianjun Wang,
Zhao De-you,
Rui Zhang,
Ying Deng,
Ding Xu,
Ji Chen,
Chao Wang,
Dehuai Chen
Publication year - 2010
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.59.1130
Subject(s) - optics , femtosecond pulse shaping , bandwidth limited pulse , ultrashort pulse , multiphoton intrapulse interference phase scan , materials science , fiber laser , laser , ultrafast laser spectroscopy , chirp , pulse (music) , pulse wave , chirped pulse amplification , physics , optoelectronics , detector
We demonstrate an all fiber multi-laser pulse generation system that can output broadband chirped pulse, nano-second shaped pulse and narrowband pump pulse for optical parametric chirped pulsed amplifiers system with precise synchronization. Yb3+-doped fiber mode-locked laser and single longitudinal oscillator are used as the optical source for the fiber system. The ultra-short pulse train generated from the mode locked fiber laser was split into two beam-lines and both were chirp-stretched to 0.9 ns. One of them was directly amplified to a magnitude of 10 μJ to provide the high-energy petawatt laser facility with seed pulse. The other was tailored by a 1.2 nm bandwidth filter to form a 140 ps unit pulse. It was then stacked in a fiber stacker and formed a 2.3 ns arbitrarily shaped pulse. The shaped pulse was amplified to 10 μJ to provide seed pulse for the pellet compression. Simultaneously, we sampled part of the ultra-short pulse train from the mode locked laser. The sampled pulse train was converted to electrical signal and phase-locked to generate trigger pulse that precisely synchronized with the mode locked pulse for an amplitude modulator. The continuous-wave laser generated from the fiber single longitudinal oscillator was tailed by the amplitude modulator and then amplified to provide seed pulse for the OPCPA system. The output of the fiber system can switch between different kinds of pulses with flexibility according to the physical experimental requirement.