
Effects of helium plasma treatment on tensile behaviour of nano-SiO2 sol-gel coating T300 carbon fiber
Author(s) -
Yingchen Zhang,
Haiyan Zhu,
Huayue Wu,
Yiping Qiu
Publication year - 2009
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.58.298
Subject(s) - materials science , coating , composite material , scanning electron microscope , fiber , nano , ultimate tensile strength , x ray photoelectron spectroscopy , fourier transform infrared spectroscopy , helium , chemical engineering , atomic physics , physics , engineering
The purpose of the present work is to investigate the effects of helium plasma treatment on tensile deformation of nano-SiO2 sol-gel coating T300 carbon fiber and provide a new concept for the nano-structural interphase between fiber surface and nano-coating. The tensile test results show that the activation volumes of T300 carbon fibers untreated and treated with helium plasma ranging from 681.9628 to 32342 nm3 by following Eyrings equation are important descriptors for the properties of the nano-structural interface between fiber surface and nano-coating, and the ductility of the nano-SiO2 sol-gel coating T300 carbon fibers treated by helium plasma is enhanced. From the results of the scanning electron microscope, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, it is found that the uniform dispersion of the nano-SiO2 coating of the T300 carbon fibers treated by helium plasma can not only fill the micro-flaws, but also cause the occurrence of effective activation surface interaction between carbon fibers and nano-SiO2 coating, along with the introduced activated functional groups on the fiber surfaces.