z-logo
open-access-imgOpen Access
Ferromagnetic quantum phase transition in Co(S1-xSex)2 system
Author(s) -
Yang Jin-Hu,
Hangdong Wang,
Du Jian-Hua,
Zhujun Zhang,
Fang Minghu
Publication year - 2009
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.58.1195
Subject(s) - condensed matter physics , ferromagnetism , quantum critical point , electrical resistivity and conductivity , quantum phase transition , fermi liquid theory , materials science , phase transition , paramagnetism , transition temperature , physics , superconductivity , quantum mechanics
In Co(S1-xSex)2 system, a transition from ferromagnetic to paramagnetic state occurs near x = 0.11. In order to research the physical properties of the samples near this transition, polycrystalline samples of Co(S1-xSex)2 (0.0≤x≤0.16) were prepared. And their structure and resistivity were measured. It is found that the ferromagnetic transition temperature TC is suppressed by Se doping in the relation TC(1-x)1/2. And the ferromagnetic phase transition goes from the second to the first order. The temperature dependence of resistivity, ρ(T), shows a Fermi-liquid behavior, ρ(T)=ρ0+AT2, in Co(S1-xSex)2 (xρ(T) occurs in the samples near a critical concentration x=0.11. It is suggested that the phase transition near x=0.11 is a quantum phase transition, and the quantum critical spin fluctuation at zero temperature results in non-Fermi liquid behavior.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom