
Magnetic field and temperature dependence of the properties of the magnetopolaron in an asymmetric quantum dot
Author(s) -
Eerdunchaolu,
Yu Ruo-Meng
Publication year - 2008
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.7100
Subject(s) - physics , condensed matter physics , phonon , ground state , magnetic field , electron , variational method , quantum dot , effective mass (spring–mass system) , coupling (piping) , operator (biology) , field (mathematics) , polaron , quantum mechanics , materials science , chemistry , biochemistry , mathematics , repressor , transcription factor , pure mathematics , metallurgy , gene
The influence of the magnetic field and temperature on the properties of the strong-coupling magnetopolaron in an asymmetric quantum dot is studied by using the Tokuda’s linear-combination operator and the Lee-Low-Pines variational method. The expressions for the vibration frequency λ, ground state energy E0 and the effective mass m* of the magnetopolaron as a function of the transverse effective confinement strength ω1, the longitudinal effective confinement strength ω2, the electron-phonon coupling strength α, the cyclotron frequency ωc and the temperature parameter γ are derived. Numerical results indicate that λ and m* of the magnetopolaron will increase with increasing ω1,ω2,ωc and α, and will decrease with increasing temperature T. The value of E0 changing with ω1,ω2,ωc,α and γ are srongly related to the propties of the state of the magnetopolaron. The signs of positeve and negative E0 relate not only to the value of ω1,ω2,ωc and α but also to the value of γ. However, only on the condition of higher temperature (γλ,m* and E0 of the magnetopolaron is obvious.