
Acoustic characteristics of underwater cylindrical Helmholtz resonator
Author(s) -
Zefeng Wang,
HU Yong-ming,
Meng Zhou,
Ming Ni
Publication year - 2008
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.7022
Subject(s) - helmholtz resonator , resonator , acoustics , radiation impedance , underwater , helmholtz free energy , physics , hydrophone , acoustic impedance , helical resonator , electrical impedance , optics , geology , ultrasonic sensor , oceanography , quantum mechanics
The acoustic characteristics of underwater cylindrical Helmholtz resonator are analyzed theoretically. Based on the theories of electro-acoustic analogy, a low frequency lumped-parameter model of the Helmholtz resonator is constructed with due consideration of the effects of the elasticity and the radiation impedance of the resonator. To our knowledge, this is the first time such a complete model is constructed. The input impedance and the transfer function of the system are given by circuit analysis. The effects of parameter values of the resonator on the acoustic characteristics are studied by numerical method. Some useful conclusions are drawn. A small aluminum cylindrical Helmholtz resonator is measured in a standing-wave tube filled with water. Error analysis is made in detail. The experimental results are in agreement with the simulation results considering the effect of the piezoelectric hydrophone. The validity of the theoretical analysis is testified. This paper supplies a theoretical and experimental basis for the design of underwater cylindrical Helmholtz resonators, and is useful for the estimation of underwater acoustic performance of Helmholtz resonators of other shapes.