
Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters
Author(s) -
Yuhong Chen,
Long Kang,
CaiRong Zhang,
Yong Luo,
Ma Jun
Publication year - 2008
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.4866
Subject(s) - density functional theory , atom (system on chip) , crystallography , crystal (programming language) , bond length , crystal structure , materials science , ionization energy , ionization , atomic physics , computational chemistry , ion , chemistry , physics , organic chemistry , computer science , embedded system , programming language
Possible geometrical structures and relative stabilities of Mg(NH2)2n(n=1—5) clusters are studied by using the hybrid density functional theory (B3LYP) with 6-31G* basis sets. For the most stable isomers, the electronic structure, vibrational properties, bond properties and ionization potentials are analyzed. The calculated results show the following tendencies: the Mg and N atom are bonded with each other to form catenulate structures. The bond lengths for Mg(NH2)2n (n=1—5) clusters are about 0.190—0.234nm for Mg—N, and 0.101—0.103 nm for the N—H bonds, the bond angles of H—N—H are about 100.2°—107.5°. The population analysis suggests that the natural charge of N atoms are about -1.551e—-1.651e, that of Mg atoms are about 1.585e—1.615e, that of H atoms are about 0.369e—0.403e, and that of—NH2 are about -0.784e—-0.845e, and the bonds between Mg and —NH2 have strong ionicity. The comparative study of structures and spectra of clusters and crystal show that —NH2 keeps the integrity in the crystal and in clusters.