z-logo
open-access-imgOpen Access
Franz-Keldysh effect in two-photon absorption
Author(s) -
Cui Hao-Yang,
Zhifeng Li,
Yajun Li,
Zhaolin Liu,
Xiaohong Chen,
Lu Wei,
Zhenhua Ye,
Hu Xiao-Ning,
Chong Wang
Publication year - 2008
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.238
Subject(s) - absorption (acoustics) , attenuation coefficient , two photon absorption , optics , space charge , physics , photon , photodiode , atomic physics , laser , intensity (physics) , optoelectronics , materials science , electron , quantum mechanics
The Franz-Keldysh effect in the two-photon absorption process in the space charge region of an Hg0.695Cd0.305Te photodiode is demonstrated. By employing as the exciting light source a pulsed laser beam at λ0=7.92μm from an optical parametric generator and difference frequency generator pumped by a pico-second Nd:YAG laser, the photo-response has been measured as a function of the excitation intensity. The peak intensity of the pulsed photo-response shows a quadratic dependence on the incident intensity. A relationship between the pulsed photo-voltage and the incident optical intensity has been established with an equivalent RC circuit model to derive the degenerate single beam two-photon absorption coefficient. The results show that the two-photon absorption coefficient within the space charge region of the photodiode is about a factor of 2.7 higher than that outside the space charge region, implying an electric field induced enhancement of the two-photon absorption. This indicates that the Franz-Keldysh effect exists not only in the one-photon absorption process but also in the two-photon absorption process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom