z-logo
open-access-imgOpen Access
High speed reconfigurable logic gates based on single semiconductor optical amplifier
Author(s) -
Jianji Dong,
Xinliang Zhang,
Yang Wang,
Dexiu Huang
Publication year - 2008
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.2222
Subject(s) - optical amplifier , modulation (music) , xnor gate , logic gate , bandwidth (computing) , computer science , electronic engineering , optoelectronics , physics , optics , telecommunications , nand gate , laser , algorithm , engineering , acoustics
The nonlinearities of a semiconductor optical amplifier (SOA) are exploited to realize various all-optical signal processing at ultrahigh speed. We demonstrate reconfigurable logic gates with XNOR, AND, NOR, OR, and NOT functions based on various nonlinearities of single SOA, including four-wave mixing, cross gain modulation and transient cross phase modulation. Since the modulation speed of the SOA is limited by the recovery time of carrier density, a detuning optical bandpass filter with 0.32nm-bandwidth follows the SOA to enhance the modulation speed. Multi-logic gates at 40Gbit/s are obtained with single SOA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom