
Prediction of the crystallization temperature and crystallization driving force for Mg-Ni-Nd amorphous alloys
Author(s) -
Wu Dong-Chang,
Lingxia Huang,
Liang Gongying
Publication year - 2008
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.1813
Subject(s) - crystallization , materials science , amorphous solid , enthalpy , amorphous metal , thermodynamics , ternary operation , alloy , chemical engineering , metallurgy , crystallography , chemistry , physics , computer science , programming language , engineering
A method for predicting the crystallization temperature and crystallization driving force of ternary amorphous alloys was provided. This method is an extension of the smallest-vacancy model suggested by Buschow for evaluating crystallization temperatures. The crystallization enthalpy and crystallization driving force are evaluated by using Miedema's semi-empirical model and the crystallization temperature is predicted. Calculation of the crystallization temperatures and enthalpy for (Mg70.6Ni29.4)1-xNdx(x5,10,15) amorphous alloys are performed by using this method. The calculated results accord well with experimental data and the relative error is less than 8% and 7% for crystallization temperature and crystallization enthalpy, respectively. It is found that with the increasing of crystallization driving force the retention rates of discharge capacity of Mg-Ni-Nd amorphous alloys decreases. For the (Mg70.6Ni29.4)1-xNdx(x1—20) amorphous alloys, the lowest crystallization driving force appears when the Nd content reaches 6.3%. That means (Mg70.6Ni29.4)93.7Nd6.3 amorphous alloy could have better retention rate of discharge capacity.