z-logo
open-access-imgOpen Access
First-principles calculations on the structures of Wn (n=3—27) clusters
Author(s) -
Lin Qiu-Bao,
Renquan Li,
Yuhua Wen,
Zhu Zi-Zhong
Publication year - 2008
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.181
Subject(s) - jellium , cluster (spacecraft) , binding energy , magic number (chemistry) , density functional theory , electronic structure , cluster size , materials science , atomic physics , physics , chemical physics , molecular physics , metal , condensed matter physics , computer science , quantum mechanics , metallurgy , programming language
The structural properties of Wn clusters (n=3—27) has been studied by employing the first-principles calculations based on the density functional theory. The most stable structures of clusters (n=3—7) with global energy minimum and optimized structures of clusters (n=8—27) with local energy minimum are determined. Based on the jellium model, the electronic configuration 1s21p61d102s21f142p63s23p62d104s22f143d101g181h223f14 is proposed which can explain well the electronic magic numbers and the relative stabilities of W clusters. The binding energy, the first and second differences of binding energies and the HOMO-LUMO gaps versus the number of atoms in the cluster are also analyzed, showing that W clusters become metallic very quickly with the increase of cluster size. This may also imply a quick change of bonding characters in the W clusters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom