z-logo
open-access-imgOpen Access
The relationship between FWHM and duration of single peaked GRB light curves
Author(s) -
Deng Jia-gan,
Ren-Tang Huang
Publication year - 2008
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.57.1285
Subject(s) - gamma ray burst , logarithm , full width at half maximum , light curve , physics , fluence , astrophysics , correlation coefficient , duration (music) , statistics , optics , mathematics , mathematical analysis , laser , acoustics
We explored the relation between FWHMs of single pulses in a sample of GRB (Gamma-Ray Burst) light curves and durations of the GRBs. Based on a sample of 108 single_peaked GRB light curves, we fitted these sample data with Kocevski, Ryde & Liang (2003) model. A sub-sample containing 59 pulses with χ2T≈BWa, where T is the duration, W is the FWHM a and B are constants. Our result shows that there does exist a proportional correlation between the logarithm of FWHMs and the logarithm of T90 (duration containing from 5% to 95% of the total fluence of a GRB) of GRB light curves with a correlation coefficient R=072.The proportional correlation between the logarithm of FWHMs and the logarithm of T50 (duration containing from 25% to 75% of the total fluence of a GRB) is more tight with a larger correlation coefficient R=093.Our finding shows that the light curve structure is correlated to the GRB duration. A larger FWHM corresponds to a longer GRB.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom